Increased divalent metal transporter 1 expression might be associated with the neurotoxicity of L-DOPA.
نویسندگان
چکیده
Based on the available data, we speculated that changes in brain iron metabolism induced by L-DOPA might be associated with the neurotoxicity of L-DOPA. To investigate this possibility, the effects of L-DOPA on the expression of iron influx proteins [transferrin receptor (TfR) and divalent metal transporter 1 (DMT1)], iron efflux protein (ferroportin 1), and iron uptake in C6 glioma cells were determined in this study using Northern blot and Western blot analysis and the calcein method. The findings showed that treatment of C6 cells with different concentrations of L-DOPA (0-100 microM) did not affect the expression of mRNA and protein of TfR and DMT1 with iron-responsive element (+IRE) and protein of ferroportin 1. However, a significant increase in the expression of DMT1(-IRE) mRNA and protein was found in cells treated, respectively, with 10 and 30 microM L-DOPA (mRNA) and 1, 5, 10 and 30 microM L-DOPA (protein). The increase in DMT(-IRE) protein induced by L-DOPA treatment was in parallel with the increase in DMT(-IRE) mRNA. The levels of DMT1(-IRE) mRNA and protein peaked in the cells treated with 10 microM L-DOPA and then decreased progressively with increasing concentrations of L-DOPA. Further study demonstrated that treatment of the cells with 10 microM L-DOPA induced a significant increase in ferrous uptake by C6 glioma cells. The findings suggested that the increased DMT1(-IRE) expression might be partly associated with the neurotoxicity of L-DOPA. Clinical relevance of the findings needs to be investigated further.
منابع مشابه
L-DOPA Neurotoxicity Is Mediated by Up-Regulation of DMT1−IRE Expression
BACKGROUND The mechanisms underlying neurotoxicity caused by L-DOPA are not yet completely known. Based on recent findings, we speculated that the increased expression of divalent metal transporter 1 without iron-response element (DMT1-IRE) induced by L-DOPA might play a critical role in the development of L-DOPA neurotoxicity. To test this hypothesis, we investigated the effects of astrocyte-c...
متن کاملEGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model.
Background. Parkinson's disease (PD) is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (-)-epigallocatechin-3-gallate (EGCG) against 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protectio...
متن کاملOlfactory uptake of manganese requires DMT1 and is enhanced by anemia.
Manganese, an essential nutrient, can also elicit toxicity in the central nervous system (CNS). The route of exposure strongly influences the potential neurotoxicity of manganese-containing compounds. Recent studies suggest that inhaled manganese can enter the rat brain through the olfactory system, but little is known about the molecular factors involved. Divalent metal transporter-1 (DMT1) is...
متن کاملBaicalin suppresses iron accumulation after substantia nigra injury: relationship between iron concentration and transferrin expression
Previous studies have shown that baicalin prevented iron accumulation after substantia nigra injury, reduced divalent metal transporter 1 expression, and increased ferroportin 1 expression in the substantia nigra of rotenone-induced Parkinson's disease rats. In the current study, we investigated the relationship between iron accumulation and transferrin expression in C6 cells, to explore the me...
متن کاملManganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes.
Neurotoxicity due to excessive brain manganese (Mn) can occur due to environmental (air pollution, soil, water) and/ or metabolic aberrations (decreased biliary excretion). Manganese is associated with oxidative stress, as well as alterations in neurotransmitter metabolism with concurrent neurobehavioral deficits. Based on the few existing studies that have examined brain regional [Mn], it is l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 69 3 شماره
صفحات -
تاریخ انتشار 2006